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ABSTRACT: In this pape,r we prove a Hermite–Hadamard type inequality for  -convex functions in the second sense for fuzzy 

integrals. Some examples are given to manifest the results. 
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INTRODUCTION 
In 1974, Sugeno [16] inaugurated the thought of fuzzy 

measures and fuzzy integral as a gadget for modeling 

non-deterministic dilemmas. The theory of fuzzy integrals 

attracted the attention of many mathematicians and therefore 

the equities and utilizations of the Sugeno integral have been 

delibrated by bountiful authors. Ralescu and Adams [11] gave 

considerably commensurate interpretations of fuzzy integrals, 

Román-Flores et al. [12, 13] studied the level-continuity of 

fuzzy integrals and H-continuity of fuzzy measures and Wang 

and Klir [18] has given a generic analysis on fuzzy 

measurement and fuzzy integration theory. Freshly, 

Román-Flores et al. [14, 15] and Flores-Franuli ̆ et al. [6] 

presented some fuzzy integral inequalities. 

In this paper we substantiate a Hermite-Hadamard type 

inequality for the Sugeno integral for functions which are 

 -convex in the second sense. 

For a seek to progress our results we first give some elemental 

characters and properties about Sugeno integral. For 

elaboration on Sugeno integral we invoke the readers to [16, 

18]. 

Suppose that   is  -algebra of subsets of   and that 

    [   ) , is non-negative, extended real valued set 

function, then   aforesaid to be fuzzy measure contingent 

upon: 

1.     )   , 

2.   ,     and     imply that    )     ) 
(monotonicity), 

3.  {  }   ,          , imply    
   

    )     
 

   
  ) 

(continuity from below) and 

4.  {  }   ,          ,     )   , imply    
   

    )  

   
 

   
  ) (continuity from above).  

If   is a non-negative real-valued function defined on  , we 

will denote by     {       )   }  {   }  the 

 -level of  , for     and     {       )  
 }  supp  is the support of  . Observe that if    , then 
{   }  {   } . If   is fuzzy measure on     ) , by 

    ) , we denote all  -measurable functions from   to 
[   ). 

Suppose that   is a fuzzy measure on     ). If        ) 

and     then the Sugeno integral (or fuzzy integral) of   

on   with respect to the fuzzy measure   is defined as 

 ∫  
 
     

   

[      {   })]  

where   and   denote the operations     and     on 
[   ), respectively. The following properties of the Sugeno 

integral are well known and can be found in [18]. 

Proposition 1   is a fuzzy measure on     ),     and  , 

       ) then 

1.  ∫  
 
       ). 

2.  ∫  
 
         ). 

3.  If     on   then ∫  
 
    ∫  

 
   . 

4.      {   })    ∫  
 
     . 

5.      {   })    ∫  
 
     . 

6.  ∫  
 
       there exists     such that  

               {   })   . 

7.  ∫  
 
       there exists     such that  

                  {   })   .  

Remark 1 Consider the distribution function   associated to 

  on  , that is,    )      {   }). Then from (4) and 

(5) of Proposition 1, we have that 

   )    ∫ 
 

       

Therefore it follows that any fuzzy integral can be calculated 

by solving the equation    )   .  

2   -Hermite-Hadamard Inequality Considering Fuzzy 

Integrals 

In [4], J. Caballero, K. Sadarangani has proven with the help of 

certain examples that the classical Hermite–Hadamard 

inequalities (see [7, 8] for the history of these inequalities): 

 (
   

 
)  

 

   
∫  

 

 
   )   

   )    )

 
   (1) 

 where   [   ]    is a convex function, do not hold true 

for fuzzy integrals in general . In [4], the authors proved some 

Hermite-Hadamard type inequalities for fuzzy integrals and 

some examples were also given to illustrate their results . 

In this section we aim to prove some Hermite-Hadamard type 

inequalities for functions which are  -convex in the second 

sense for fuzzy integrals. 

In literature [2], a function   [   )  [   ) is an  -convex 

in the second sense, or that   belongs to the class   
 , if 

         ) )       )      )    )  
holds for all  ,   [   ) ,   [   ] , for some fixed 

      ]. 
In [5], Dragomir and Fitzpatrick proved a variant of 

Hadamard’s inequalities which hold for  -convex functions in 

the second sense: 

     (
   

 
)  

 

   
∫  

 

 
   )   

   )    )

   
  (2) 

 where (2) is known in literature as  -Hermite-Hadamard 

inequalities. For more about the properties on  -convex 

functions and  -Hermite-Hadamard inequalities we refer the 

interested readers to [1, 2, 3, 5, 9]. 

mailto:wchattha@hotmail.com


800 ISSN 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),28(2),799-802,2016 

March-April 

Unfortunately, as we will see, the  -Hermite-Hadamard 

inequalities do not valid as well for fuzzy integrals in general. 

We quote below a very important example of  -convex 

functions from [5] to be used in the sequel: 

Let       )  and        . We define a function 

  [   )   , by 

   )  (
     
         

 

If     and      , then     
 . Hence, for      , 

   , we have   [    ]  [    ],    )    ,      , 

    
 ,      (see e.g.[5]). 

Example 1 Consider   [   ] and let   be the usual 

Lebesgue measure on  . If we take the function    )  √ , 

  [   ], then     
 . Now we calculate the the Sugeno 

integral ∫  
 

 √    by using Remark 1. Consider the 

distribution function   associated to   on [   ], that is 

   )    [   ]  {   })   ([   ]  {√   })

   [   ]  {    })       

and we solve the equation       , we obtain that 

  
   √ 

 
. By Remark 1 we have 

 ∫  
 

 √    
   √ 

 
          

on the other hand for   
 

 
, we have  

  
  

  (
 

 
)   

  

  
 

√ 
          

This shows that the left part of the  -Hermite-Hadamard 

inequality is not valid in the fuzzy context in general.  

Example 2 Consider   [   ] and let   be the usual 

Lebesgue measure on  . If we take the function    )  
√ 

 
, 

then     
 . Now again we calculate the the Sugeno integral 

∫  
 

 

√ 

 
   by using Remark 1. Consider the distribution 

function   associated to   on [   ], that is 

   )    [   ]  {   }) 

   [   ]  {√     })    [   ]  {      }) 
        

 and we solve the equation        , we obtain that 

  
   √  

  
. By Remark 1 we have  

 ∫  
 

 

√ 

 
   

   √  

  
            

but on the other hand for   
 

 
, we have  

 
 [   )    )]

 
 

 

 
             

Thus the right side of the  -Hermite-Hadamard inequality is 

not satisfied for fuzzy integrals. Now we present 

 -Hermite-Hadamard inequalities for the Sugeno integral. 

Lemma 1 Let       and    ,    . Then 

     )         
Proof. When    , then the result is obviously true. So 

assume that       and consider the function 

    )           )       

Then      )             )         

Since      , hence      )   ,    . Thus 

   )         
That is     )             (3) 

 If     then     )        is true with equality 

sign, so let     and take   
 

 
 in (2.3), we have 

    )  (
 

 
)
 

       

so that            )         
This completes the proof.  

Theorem 1   [   ]      ] be an  -convex function in the 

second sense       ) and   the Lebesgue measure on  . 

Then 

∫               {      }  
where    is a positive real solution of the equation   

(
     )

   )    )
)

 

 
  .  

Proof. Since   is an  -convex function in the second sense 

      ), therefore for   [   ] we have 

   )   (    )     )      )    )       ) (4) 

 We observe that      , therefore we have that 

    |   |       
and hence by Lemma1, we have     )      )    
    
Thus (2.4) becomes    )       )   )       )     )  
By (3) of Proposition 1, we have that 

∫  
 

 
    ∫  

 

 
(     )   )       ))   ∫  

 

 
   )    (5) 

 In order to calculate the integral in the right-hand part of the 

last inequality, we consider the distribution function   given 

by 

   )    [   ]  {   })    [   ]  {     )   )  
     )   })          (6) 

 Thus from (6) we get that 

    )    [   ]  {   }) 

   ([   ]  ,  (
     )

   )    )
)

 

 
-) 

    (
     )

   )    )
)

 

 
  

 Therefore we have   (
     )

   )    )
)

 

 
      (7) 

 From (1) of Proposition 1 we get that 

 ∫  
 

 
   )     [   ])        (8) 

 By Remark 1, (5) and (2.8), we have ∫  
 

 
       {    }  

where    is a positive real solution of (7). This completes the 

proof of the thoerem.  

Corollary 1   [   ]      ] be an  -convex function in the 

second sense       ) and   the Lebesgue measure on  . 

If    )     )   , then 

∫  
 

 

       {    }  

where    is a positive solution of the equation 

   (
     )

    )
)

 

 
  .  

Proof. It is direct consequence of the above theorem. Now we 

give examples to illustrate our result: 

Example 3 Consider the function    )   
 

  on [   ], then   

is an  -convex function. Moreover    )    and    )   , 

thus in particular for   
 

 
, we have from the equation 

  (
     )

   )    )
)

 

 
  ,       ), which gives by solving by 
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numerical methods, the positive real solution  

    √
 

   
√  √    

 

 

 
 

 

 √
 

   
√  √    

 

 

 
           

Therefore from Theorem 1 we have 

 ∫  
 

 
    √

 

   
√  √    

 

 

 
 

 

 √
 

   
√  √    

 

 

 
  

Note that one can choose other values of       ) to get 

another estimates for the integral ∫  
 

 
 

 

   .  

Example 4 Consider the function    )   
 

  on [   ], then   

is an  -convex function. Moreover    )    and    )   , 

thus in particular for   
 

 
, we have from the equation 

  (
     )

   )    )
)

 

 
  , which gives by solving by numerical 

methods, the positive real solution           . Therefore 

from Theorem 1 we have 

∫  
 

 

             

Note that one can choose other values of       ) to get 

another estimates for the integral ∫  
 

 
 

 

   .  

Now we prove general case of Theorem 1 as follow: 

Theorem 2   [   ]      ] be an  -convex function in the 

second sense       ),         and   the 

Lebesgue measure on  , then 

 ∫  
 

 
       {      }  

where    is a positive real solution of the equation    

     ) *  (
     )

   )    )
)

 

 
+   .  

Proof. Since   is an  -convex function in the second sense 

      ), therefore for   [   ] we have 

    )   ((  
   

   
)   

   

   
  ) 

  (  
   

   
)
 

   )  (
   

   
)
 

   )   (9) 

 Arguing similarly as in Theorem 1, we have that 

   
   

   
 |  

   

   
|    |

   

   
|    

   

   
 

and hence by Lemma1, we have 

 (  
   

   
)
 

 (  
   

   
)
 

   (
   

   
)
 

  

Therefore (9) gives 

    )  (  (
   

   
)
 

)    )  (
   

   
)
 

   )     ) 

By (3) of Proposition 1, we have 

∫  
 

 
    ∫  

 

 
*(  (

   

   
)
 

)    )  (
   

   
)
 

   )+    

∫  
 

 
    (10) 

Let us consider the distribution function   associated to   on 
[   ] given by 

    )    [   ]  {   }) 

  ([   ]  ,(  (
   

   
)
 

)    )  (
   

   
)
 

   )   -) 

  .[   ]  2        ) (
     )

   )     )
)

 
 

3/ 

     ) *  (
     )

   )    )
)

 

 
+  (11) 

 Therefore from (11), we have the equation 

    ) *  (
     )

   )    )
)

 

 
+     (12) 

 By (1) of Proposition 1 we get that 

∫  
 

 
   )     [   ])       (13) 

 Thus by Remark 1, (10) and (13), we have 

∫  
 

 

       {      }  

where    is a positive real solution of (13).  

Corollary 2   [   ]      ] be an  -convex function in the 

second sense       ),         and   the 

Lebesgue measure on  . If    )     )   , then 

 ∫  
 

 
       {      }  

where    is a positive solution of the equation 

     ) *  (
     )

    )
)

 

 
+   .  

Proof. It is direct consequence of the above theorem.  

Example 5 Let    )    
 

  be a function defined on [   ], 
then   is an  -convex function in the second sense . Here we 

have    ,    , moreover    )     )    and 

   )     )   
 

 , therefore by Theorem 2, we solve the 

equation     ) *  (
     )

   )    )
)

 

 
+   , that is in particular 

for   
 

 
, we solve the equation  *  

  

  
+   , we get that  

   √
 

  
√  √      

 

 
 

 √  
  √  √      

 

          
Hence we get the following estimate: 

∫  
 

 

       

{
 

 

  √
 

  
√  √      

 

 
 

 √  
  √  √      

 

}
 

 

 

 

 √
 

  
√  √      

 

 
 

 √  
  √  √      

 
  

Example 6 Let    )    
 

√  be a function defined on [   ], 
then   is an  -convex function in the second sense. Here we 

have    ,    , moreover    )     )    and 

   )     )     
 

√ , therefore by Theorem 2, we solve the 

equation     ) *  (
     )

   )    )
)

 

 
+   , that is in particular 

for   
 

√ 
, we solve the equation  0  (

 

   

 

√ 

)

√ 

1   , we 
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get that          . Hence we get the following estimate: 

 ∫  
 

 
       {        }          

Remark 2 In the last two examples one can get different 

estimates for the integrals for different choices of       ).  

 

CONCLUSION  
Hermite–Hadamard type inequality for  -convex functions in 

the second sense for fuzzy integrals is established, and our 

results are evident by examples . 
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